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I. ABSTRACT

Visibility graphs have many applications, including
finding the shortest path, robotic motion planning and
the art-gallery problem. The first non-trivial algo-
rithm developed for finding the visibility graph runs in
O(n2 log n) and is presented in this paper. Its correct-
ness, space, and time usage are mathematically analyzed.
Because faster algorithms to solve this problem have been
discovered, this paper is somewhat original in its analy-
sis and implementation details of an otherwise forgotten
algorithm.

II. INTRODUCTION

A. Visibility Graph

Visibility is an important property in computational
geometry and is used in many different types of prob-
lems, structures and algorithms [8]. One of the most
basic structures is the visibility graph, where an input
graph G describes a set of geometric primitives in an
d-dimensional space, and the output visibility graph
Gv describes the visibility between every vertex and
every other vertex in G. Here, we define visibility as
the ability to run a straight line between two vertices
without crossing any other edge in the input graph G. In
this way, two visible vertexes are said to be unobstructed
by any obstacle, and a line is drawn between them in
the output Gv. An example visibility graph in d = 2
dimensions Euclidean space is shown in Figure 1.

The set of geometric primitives inG can consist of a
variety of different types of shapes: rectilinear, circular,
line segments, convex polygons or, most generally,
simple polygons. Many different algorithms have been
developed based on the assumption of which types of
geometric primitives are allowable. In this paper we will
focus on simple non-intersecting line-segments, so as to
simplify our proofs and analysis. Very little modification
would be required to expand the problem space to
general polygons.

The layout of the geometric primitives is another vari-
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FIG. 1: Top: An input graph G consisting of a set of simple
line segments. Bottom: a generated visibility graph Gv de-
scribing all possible non-obstructed connections between each
vertex.

ation between computational geometry papers. In some,
visibility within a simple polygon is the only problem
space, but more often there exists obstacles within the
space, also referred to as holes or islands. Another vari-
ation of the visibility graph for all points is finding the
visibility tree for just one point, which is simply a sub-
problem of the visibility graph for all points.
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B. Applications

Visibility graphs are most often thought of for use in
Euclidean shortest-path problems, were a start point s
and end point t are given and the task is to find the
optimal continuous path through the obstacle space
without violating physical constraints. This application
exploits the fact that the shortest paths are found on
the arcs of the visibility graph. Once the visibility graph
has been constructed, the shortest path problem can
be trivially solved using well known algorithms such
as Dijkstra’s [6], A* search[5], or Floyd-Warshall [3]
algorithms.

Robotic motion planning is a common sub problem
of the shortest path problem, as demonstrated in
Lozano-Perez and Wesley’s 1979 collision-free paths
algorithm [11]. One of the most famous examples
of visibility graphs used in robotic motion planning
is Shakey the Robot [11]. However, the application
of visibility graphs realistically limits the workspace
to two dimensions and is generally computationally
intractable for modern real-world robotics problems.
Sampling-based approaches are considered the current
state of the art and, although unable to determine
that no path exists, have a probability of failure that
decreases to zero as more computational time is spent [7].

Additional applications of visibility graphs include
finding the minimum dominating set to help solve the art
gallery problem and in solving pursuer-evader problems
[10]. Finally, visibility graphs can be used to optimize ra-
dio antenna placement, urban planning and architectural
design [1].

C. History

The naive approach to computing the visibility of a
graph runs in O(n3) times. The first non-trivial solution
to this problem was developed by D.T. Lee in his 1978
Ph.D. dissertation that ran in O(n2 log n) time [9]. The
solution is included at the end of his thesis as somewhat
of a side thought and it has since then received very
little attention in the computational geometry field.
Only available upon email request, the typed report
includes hand-written edits and drawings. This is the
algorithm that will be analyzed in this paper.

In the 1980’s a large number of O(n2) visibility graph
papers were published, most of which entailed a topo-
logical sort of the vertex pairs. E. Welzl in particular
described this technique using an arrangement of the
dual of the vertices that required O(n2) working space
[13]. The working storage of the topological sweep was
later improved to O(n) by Edelsbrunner and Guibas
[2]. Further improvements included handling dynamic
updates of the workspace, using less running time on

average, or handle sparse graphs more efficiently. One of
the last papers published on visibility graphs during this
time period achieved O(|e|+n log n) time bounds, which
are output-sensitive algorithms optimal for graphs of a
certain minimum density threshold [4].

III. METHODS

A. Description of the Algorithm

Lee’s O(n2 log n) algorithm computes the visibility
graph Gv from G(V,E) by computing the visibility
graph of a single vertex n times. For each vertex vi ∈ V ,
the visibility of all other vertices is calculated by 1)
sorting all surrounding vertices in angular order from
some starting scan line, 2) using a rotating plane sweep
technique to visit each vertex in angular order and 3)
keeping track of the distance of each surrounding line
segment on the scan line in a sorted data structure. The
following details these 3 procedures:

For each vi ∈ V a visibility tree is generated describing
the visibility of all other points vj ∈ V − vi with respect
to vi. Each visibility tree is created by setting vi to
be the center vertex c. A starting scan line vector ~s is
initialized for each c, with the origin of the vector at c.
Its direction is irrelevant for the algorithm but in this
paper and implementation ~s will be assumed to be the
horizontal unit vector î pointing straight and to the
right from c, i.e. ~s = î = [1, 0].

From scan line ~s = î we calculate the counter clockwise
angle θi = angle(~sc→vi , î) for every vertex vi ∈ V − c.
The angles are inserted to an optimally sorted data
structure A from smallest to largest.

FIG. 2: Example of an initialized edge list with all edges that
intersect scan line s. Image courtesy of [8]

A second optimally sorted data structure Es is
initialized containing all the line segments li ∈ E that
intersect scan line ~s at the start of the algorithm. This
operation requires |E| checks, calculating if ~s and line
segment li intersect. The line segments that are found
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to intersect are inserted into Es with their keys being
the distance from c to the intersection point v[i,i−1]
such that the root of the sorted data structure always
contains the edge closest to c. We can intuitively see
that this root edge is the only edge visible from c at this
scan line instance. Figure 2 depicts an initialized scan
list, though in this example vector ~s is not horizontal.

After the initialization phase the algorithm visits
every vertex vi in order of θi in A. The scan line does
not have to actually visit every angle in the circle, but
only those θi where a vertex vi intersects ~s. For each
vi scanned, the algorithm decides if its corresponding
line segment lvi,vi+1 is the first or last vertex seen of
its corresponding li. If it is the first vertex seen, then
lvi,vi+1 is added to Es and is considered open. If it is
the second vertex seen, or if it was initialized as open on
~s0, then it is removed from Es and is considered closed.

For each visited vi, a check is made to see if vi is
the root of Es, signifying that vi is the closest vertex
to c with respect to ~s. If vi has this property, then
vi is considered visible and is added to the visibility
graph Gv; otherwise it is obscured by some other edge
appearing before it, with respect to c, and is ignored.

In this way every visible vertex with respect to c is
found and a visibility tree is generated for some vi. This
process is repeated n times to build a complete visibility
graph.

B. Runtime

The asymptotic runtime of Lee’s algorithm is analyzed
in the following. The algorithm has four for-loops as well
as the operations of the optimal sorting data structure.
An outer for-loop iterates once through n = |V | = 2|E|
points, finding the visibility tree for every point.

Within the outer for loop, each end point pair for
every |E| line segments are inserted into the optimal
sorting data structure A. Insert, delete, and find all
take O(log n) time using a probabilistic structure such
as a skip list, or balance binary search tree, such as
an AVL tree. Thus, the insertion time for A takes
2|E| log n = O(n log n).

Next, the sweep line edge list Es is initialized by
checking all |E| edges in G for intersection with ~s = î.
The edge list Es uses the same data structure as A, and
thus all insertions take O(log n) time. In the worse case,
all |E| edges intersect ~s at some θi, so the total runtime
for this step is O(|E| log |E|). There are twice as many
vertices as edges, and so because |E| < |V |, this runtime
is asymptotically overshadowed by the previous step and
can be ignored.

Finally, the sweeping for-loop begins its check of every
vi ∈ V − c points. At each vertex a line is either inserted
into or removed from Es once, requiring again O(log n)
time for each operation. Thus the total running time for
this step is also (n− 1) log n = O(n log n).

With these three steps and the outer for-
loop combined, our summed running time is
O(n · (.5n + n + n − 1) · log n), which asymptoti-
cally reduces to simply O(n2 log n).

C. Space Requirements

The space requirements of Lee’s algorithm is analyzed
in the following. The input graph G requires O(V + E)
space, but we will assume that the input graph is not
included in our space requirements.

Two optimum sorting data structures are needed in
the algorithm - A and Es. D.T. Lee’s original paper sug-
gested an AVL tree be used; in our implementation we
have used a skip list. Regardless, both use O(n) space,
totaling 2O(n). Because each θi is inserted into A once,
n = |V | for datastructure A. In the worse case all edges
are intersected by ~s at the same time, making Es have
size n = |E| = .5|V |. No other memory is used in the
algorithm, so the total overall space requirements, not in-
cluding the input graph, is O(1.5|V |), which is equivalent
to simply O(n).

D. Analysis of Correctness

We begin our proof of correctness of Lee’s O(n2 log n)
algorithm by defining the components of the algorithm.

Definition 1. A visibility graph Gv = (V,Ev) is the set
of all vertices V in input graph G, and the set of edges
Ev which connects two vertices vi, vj ∈ V without inter-
secting any obstacles, for all vi, vj ∈ V . We assume that
two endpoints i and j of the same line are also considered
visible. We restrict our obstacle set to the |E| disjoint
line segments, in any direction.

Definition 2. The line sweep vector ~s is a vector with
its origin at some point c ∈ V that rotates starting from
direction î a full 2π radians.

Definition 3. A line segment li is an obstacle in the
2 dimensional problem space defined between vertices vi
and vi−1.

Definition 4. The set Es contains all li that intersect
with ~s originating at point c, ordered in decreasing Eu-
clidean distance from c to li.
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The above definitions we will now begin to prove the
algorithms’ correctness by observing the existence of
optimal substructure of the visibility graph:

Lemma 1. The visibility tree containing set of all edges
Ei connecting a single point vi to all other visible points
vj ∈ V − vi, with respect to the single point vi, is a sub-
solution to finding the visibility graph of all points vj ∈ V
in G.

Proof. Assume the visibility tree Ei for some vi is gener-
ated correctly every time. For N = 1 points, by the just
stated assumption no other endpoint vj of a line segment
is visible from that N = 1 point that is not already in the
set Ei=1. For N = 2 points, following the same assump-
tion, no point will be visible to those N = 2 points that
is not already in the combined visibility tree set Ei=[1,2].
For N = |V | points, it follows that no point in V will be
visible from any other point in V that is not already in
the set Ei=1→N . In this case our above definition of a
visibility graph is satisfied and our N sub-solutions have
resulted in correctly finding the visibility graph Gv for
all points vj ∈ V .

Lemma 1 assumed that the set of edges Ei defining a
visibility tree, for some vertex i, was generated correctly
every time. We now prove our algorithm for this
subproblem. We begin by defining the assumptions of
our scan line method:

Lemma 2. No more than one obstacle is visible at any
time from a center point c with respect to the direction of
a scan line vector ~s at any angle in Euclidean space.

Proof. A Euclidean vector is defined as a geometric ob-
ject that has a direction and length (or magnitude), but
it does not itself have a width, or at least the width could
be considered infinitely narrow. An infinitely narrow seg-
ment of a directional vector could not be obstructed by
more than n = 1 geometric element at a time because
otherwise the combined width of n > 1 geometric ele-
ments would have to be infinitely small. The combined
width of two objects would be greater than infinitely
small. Therefore, because obstacles in our problem space
are assumed to be line segments, our lemma stands.

Corollary 1. The intersection point of ~s and li ∈ Es

with the minimum Euclidean distance to c is the only
line segment visible.

Proof. Although ~s may cross several li ∈ Es, by Lemma
2 we know only one point can have the visible property
for a given ~s, and by the definition of visibility we know
it must be the first line segment it reaches. The first line
segment a vector crosses from some point c is the segment
closest in Euclidean distance.

With Lemma 2 and Corollary 1 we have proved
the correctness of the results of scan line ~s at one θi.
We will now expand our proof to all θ ∈ 2π and our
discretization method.

Lemma 3. No change is made in the visibility of any
line segment with respect to ~s except when ~s intersects
an end point of some line segments.

Proof. By contradiction. Assume the set Es correctly
contains all line segments that intersect some vector ~s
and assume ~s is at some θa that does not intersect any
end points ∀vi ∈ V . The only way to change the visibility
of a line segment at ~s would be to remove the first line
segment Es because this is the line segment closest to
c. Suppose we removed this line segment, despite having
no vi in intersection with ~s. Then there exists a li that
intersects ~s and Es violates definition 4 defining what Es

must contain, and by contradiction this lemma is proved.

Corollary 2. In the non-discrete angular space θ be-
tween 0 and 2π, our scan line need only check |V | − 1

discrete steps where θi = angle(~sc→vi , î),.

Proof. Following from Lemma 3, no changes in visibility
occur with respect to the rotation of ~s around c except
when ~s intersects an end point vi, and there are only
|V | − 1 endpoints around c so it follows that only |V | − 1
angles of θi need to be checked.

The utility of a scan line is now sufficiently proven by
Lemma 3 and Corollary 2. The mechanism for tracking
the removal and insertion of lines into Es is now proved:

Lemma 4. A line segment li with an end point vi in
intersection with ~s must be added to the set Es if the op-
posite end point vi−1 of li has not previously been visited
(the line was ”closed”). Otherwise, if it has been previ-
ously visited, li must be removed from the set Es (the line
was ”open”).

Proof. Following the stated assumption that ~s rotates in
a counter clockwise direction, and recalling that at ini-
tialization all li in intersection with ~s are added to Es

and marked as open, it can be observed that Lemma 4 is
required to maintain Definition 4, that Es must contain
all line segments that intersect ~s.

Using Lemmas 1 to 4 and Corollaries 1 and 2 the
following theorem is supported:

Theorem 1. Given a set of n disjoint line segments
in the Euclidean plane, the visibility graph can be con-
structed correctly in O(n2 log n) time using the rotational
sweep method in Lee’s algorithm.
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IV. RESULTS

A. Implementation

The O(n2 log n) algorithm was implemented in
C++ and visualized/animated using the open source,
cross-platform CImg graphics library. With the graph-
ics library we were able to visually verify geometric
results such as shown in Figure 3. The full source
code is appended at the end of this paper and is
available as an open source project online at https:
//github.com/davetcoleman/visibility_graph

FIG. 3: Test input graph of 8 line segments (white) and the
generated visibility graph of Ev lines (blue)

B. Skip Lists

D.T. Lee’s original paper suggested an AVL tree
data tree structure be used, but his paper was pub-
lished before the invention of skip lists in 1989 by
W. Pugh [12]. In this implementation we chose to
use a skip list due to its average case performance
and advantage in concurrent access and modifications.
However, a unique property of our algorithm required
special modification to the skip list such that the key
values of data already in the skip list are variable.
That is to say, the value of each element in the skip
list changes as the scan line rotates around some center c.

The need for this property is motivated in Figure 4.
In this example line l1 is the first line segment that scan

line ~s would visit and so it would be inserted into the
skip list Es with the distance d1 from its first endpoint
to c. Next, the scan line would visit the first endpoint
of l2 and it would add l2 to Es with distance d2. Thus,
Es would have as its first ordered line segment l1, and
for its seconds l2. But by definition 4, Es should have
as its first line segment the segment closest to c, and at
scan line ~s′ the closest intersecting line segment is now
actually l2. As it is now clear, in our current example
the ordering of Es would be incorrect at location ~s′

unless there was some way to update the value of l1 to
reflect its distance from c with respect to θi of ~s′.

FIG. 4: Line l1 originally was the closest point to c, but at
scan line ~s′ line l2 covers l1. This demonstrates the need for
elements variable values in the skip list.

This might seem like an impossible property of a skip
list, but in fact there is an additional property that
states that the ordering of the items in the skip list
are guaranteed not to change, just the values. In other
words, although l1 at angle θi has an intersection with
~s′ that is a greater distance than that of l2 from c, the
ordering of l1 in Es with respect to all other open line
segments in Es would remain unchanged due to the
assumption that no line segments can intersect in our
problem space.

Therefore, in implementing the actual visibility graph,
each line segment was represented as an object that
could quickly re-calculate its intersection with ~s and
then distance to c. This was accomplished by caching
the slope m and y-intercept b at the initialization of the
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line object, as well as caching the resultant distance d
from c for every θi such that d is only calculated once
for every thetai.

C. Precision Errors

Another issue with our implementation was rounding
errors that occurred when calculating the angles between
two close points. This was especially problematic as
we increased the number of line segments added to our
finitely-sized graphics window. Sometimes two unique
points would be added to the angle list A with the same
angle because of rounding errors, and the result was
that some points were mistakenly added as visible.

Particularly problematic were perfectly horizontal and
vertical lines. With vertical lines the slope m would tend
to infinity, but in this implementation it was faked with
some very large number. In the same way, a horizontal
line has a slope with an infinitely small m, and this again
suffered from the limitations of our computer hardware.

D. Numerical Time Usage

To calculate the numerical time usage of this algo-
rithm, the source code was modified to automatically
generate a set of n line segments. To test the runtime
with exponentially increasing problem space it was
instrumented to generate approximately n = 10x line
segments. However, to ensure a useful test set was
generated without intersection, each line segment was
constrained to a grid area. Within each line segment’s
grid, padding was added to allow more visibility between
grids. Additionally, 4 shapes were used inside the grids:
a horizontal, vertical, diagonal increasing and diagonal
decreasing line segment. Which of the 4 was chosen was
decided at random, such that every test was run on a
problem set with a high probability of being unique.
Because of the gridded nature of the problem space,
in reality only nx = (b(10n)1/2c)2 line segments were
added. An example of an automatically generated
problem space is shown in Figure 5.

With this setup, the numerical time usage was
measured by counting the number of atomic operations
within both the algorithm and the skip lists. The
algorithm was tested for n = 101 → 103.5. At problem
size n = 104 the algorithm crashed on both our laptop
and on a node on the Janus super computer. This,
however, is mostly due to some memory leaks that were
problematic to patch.

The results of the atomic operations measurements are
shown in Figure 6. Our data showed performance that
was very tightly bound to a run time of O(n2 log n). This

FIG. 5: An example generated problem space for nx =
(b(10n)1/2c)2 line segments, with randomly chosen shapes.

run time is both the worst- and average-case for this al-
gorithm because all points are always added to A and E
and all points are always visited to generate their indi-
vidual visibility tree.

FIG. 6: Atomic operations of Lee’s visibility graph algorithm
for increasing number of line segments n.

Further visual results of the algorithm running for
n = 100 line segments is shown in Figure 7 and for
n = 1000 line segments in Figure 8.
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FIG. 7: Generated visibility graph for n = 100 line segments.

FIG. 8: Generated visibility graph for n = 1000 line seg-
ments.

E. Numerical Space Usage

The numerical space usage of this algorithm was
measured by tracking the maximum number of nodes
from both skip lists combined at any point in the
algorithm. Here, we define a node as a level in the
skip list structure, such that a root with 3 levels is

considered to use 3 atomic memory amounts. A memory
counter was incremented for every new node created,
and decremented for every node deleted. A secondary
counter was used to track the maximum amount of
memory used at any point in the algorithm’s progress.
The results are shown in Figure 9. As expected, the
memory usage was on the order of O(n).

FIG. 9: Measured space usage of Lee’s visibility graph algo-
rithm. The upper and lower dotted line bounds are multiplied
by constants of 3 and 7, respectively.

V. CONCLUSIONS

There exists many additional optimization tweaks
that could be applied to this algorithm. One such
optimization is to limit the scan line rotation to only
half the circle, from the observation that visibility
between a pair is mutual. Other optimizations could be
made in the geometric calculations such as studying the
performance advantages between finding the distance
using the line-of-sine method versus the intersection
method and dealing with slopes of negative and positive
infinity. Lastly, the dynamic-valued skip list structure
discussed in section IV. B. requires a large number of
distance calculations at every rotation of the scan line,
and could be reduced by only checking a vertices’ change
in distance immediately around the skip lists’ chosen
insertion point for a new line segment. While simple
in explanation, it would be complicated in required
modification to the skip list algorithm.

In this paper we have explained, analyzed, proved and
implemented D.T. Lee’s 1978 visibility graph algorithm.
As explained in the introduction, faster algorithms
have been developed that run on O(n2) time and other
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optimizations have been discovered for special case
problems where certain geometric tricks can be utilized.
However, basic applications such as the shortest path
planning problem with no more than order O(n3) line
segments has been shown in this paper section to be
feasible with this algorithm and in our experiments have
generated visibility graphs in seconds.
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C++ Code For Visibility Graph Implementation

Index:
vgraph.cpp
skiplist.h
line.h
line.cpp
point.h
point.cpp
geometry.h
plot.m
data.cvs

vgraph.cpp

1#inc lude ”CImg . h”// Inc lude CImg l i b r a r y header .
2#inc lude <iostream>
3#inc lude ” l i n e . h”
4#inc lude ” po int . h”
5#inc lude ” s k i p l i s t . h”
6#inc lude <cmath>
7
8us ing namespace c img l i b r a r y ;
9us ing namespace std ;
10
11const unsigned char WHITE[ ] = { 255 , 255 , 255 } ;
12const unsigned char GREY[ ] = { 100 , 100 , 100 } ;
13const unsigned char BLACK[ ] = { 0 , 0 , 0 } ;
14const unsigned char RED[ ] = { 255 , 0 , 0 } ;
15const unsigned char GREEN[ ] = { 0 , 255 , 0 } ;
16const unsigned char BLUE[ ] = { 0 , 0 , 255} ;
17const i n t s c r e e n s i z e = 800 ;
18
19//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
20// Prototypes
21//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
22void vgraph ( double order ) ;
23double vectorsAng le ( i n t x , i n t y , i n t basex , i n t basey ) ;
24double d i s t ance ( Point ∗ a , Point ∗ b ) ;
25
26//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
27// Main procedure
28//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
29i n t main ( )
30{
31cout << endl << endl << ” V i s i b i l i t y Graph by Dave Coleman −−−−−−−−−−−−−−−−−−−− ” << endl

<< endl ;
32
33f o r ( double order = 2 ; order < 3 ; order += 0.5 )
34{
35vgraph ( order ) ;
36}
37
38r e turn EXIT SUCCESS ;
39}
40
41void vgraph ( double order )
42{
43// Var i ab l e s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
44
45// Atomic opera t i on counter
46atomic = 0 ;
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47
48// Graphics :
49bool v i s u a l = true ;
50bool l i v e = true ;
51
52CImg<unsigned char> img ( s c r e e n s i z e , s c r e e n s i z e , 1 , 3 , 2 0 ) ;
53CImgDisplay d i sp ( img , ” V i s i b i l i t y Graph” ) ; // Display the modi f i ed image on the

s c r e en
54
55// Line segments :
56i n t s i z e = pow(10 . 0 , order ) ;
57i n t row co l = sq r t ( s i z e ) ;
58i n t seg = row co l ∗ row co l ;
59
60// Coordinates :
61double width = s c r e e n s i z e / row co l ; // s i z e o f each g r id box
62double margin = 0 .1 ∗ width ; // padding i n s i d e each box
63double top , bottom , l e f t , r i g h t ; // coo rd ina t e s o f box with padding
64
65// Generate space f o r SEG number o f l i n e s
66Line ∗ s eg s [ seg ] ;
67
68// Track what index we are on
69i n t index = 0 ;
70
71// Now generate seg l i n e segments
72f o r ( i n t x = 0 ; x < row co l ; ++x)
73{
74f o r ( i n t y = 0 ; y < row co l ; ++y)
75{
76top = y∗width + margin ;
77bottom = (y+1)∗width − margin ;
78l e f t = x∗width + margin ;
79r i g h t = (x+1)∗width − margin ;
80
81// Create l i n e segment in box o f s i z e width∗width
82// x1 , y1 , x2 , y2
83switch ( rand ( ) % 4 )
84{
85case 0 : // v e r t i c l e l i n e
86s eg s [ index ] = new Line ( l e f t , top , l e f t , bottom ) ;
87break ;
88case 1 : // ho r i z on t a l l i n e
89s eg s [ index ] = new Line ( l e f t , top , r i ght , top ) ;
90break ;
91case 2 : // d iagona l l e f t to r i g h t
92s eg s [ index ] = new Line ( l e f t , top , r i ght , bottom ) ;
93break ;
94case 3 :
95s eg s [ index ] = new Line ( l e f t , bottom , r ight , top ) ;
96break ;
97}
98
99index++;
100}
101}
102
103// cout << ”SEGS ” << seg << ” INDEX ” << index << endl ;
104
105/∗
106Line s eg s [ ] =
107{
108Line (280 ,300 ,330 ,120) , // 0 f i r s t
109Line (450 ,150 ,280 ,330) , // 1 second
110Line (400 ,150 ,401 ,190) , // 2 th i rd , l a t e r
111Line (400 ,400 ,450 ,200) , // 3 f a r r i g h t
112Line (350 ,350 ,350 ,450) , // 4
113Line (10 ,200 ,100 ,215) , // 5
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114Line (50 ,50 ,50 ,100) , // 6
115Line (200 ,450 ,300 ,450) // 7
116} ;
117∗/
118
119// Reusable po in t e r l o c a t i o n s
120Line ∗ l ;
121Point ∗ p ;
122
123i n t c e n t e r i d ;
124bool isPointA ;
125
126// V i s i t each ver tex once and perform the v i s i b i l i t y a lgor i thm
127f o r ( i n t outer = 0 ; outer < 2∗ seg ; ++outer )
128{
129++atomic ;
130
131// F i r s t or second number on each l i n e ?
132c e n t e r i d = outer / 2 ;
133
134// Garbage Co l l e c t
135i f ( outer )
136{
137de l e t e c ent e r ;
138de l e t e c e n t e r l i n e ;
139}
140
141// cout << ”LINE ID : ” << c e n t e r i d << endl ;
142i f ( ! ( outer % 2) ) // i s even
143{
144c en te r = new Point ( s eg s [ c e n t e r i d ]−>a−>x , s eg s [ c e n t e r i d ]−>a−>y ) ;
145i sPointA = true ;
146}
147e l s e // i s even
148{
149c en te r = new Point ( s eg s [ c e n t e r i d ]−>b−>x , s eg s [ c e n t e r i d ]−>b−>y ) ;
150i sPointA = f a l s e ;
151}
152
153// Center Line Calc :
154c e n t e r l i n e = new Line ( center−>x , center−>y , center−>x+1, center−>y ) ;
155
156// Add po in t e r s to a l l po in t s back to parent l i n e
157center−>parentLine = seg s [ c e n t e r i d ] ;
158
159// Draw sweeper :
160//img . d raw l ine ( center−>x , center−>y , center−>x+200 , center−>y , RED) ;
161i f ( v i s u a l )
162img . d r aw c i r c l e ( center−>x , center−>y , 6 , RED) ;
163
164/∗ cout << ”LINE ID ” << c e n t e r i d << ” ” ;
165i f ( i sPointA )
166cout << ”A” << endl ;
167e l s e
168cout << ”B” << endl ;
169∗/
170
171// Datas t ructure s :
172s k i p l i s t <Point∗> ang l eL i s t ;
173s k i p l i s t <Line∗> edgeL i s t ;
174
175// Algorithm −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
176
177// Draw segments and i n s e r t POINTS in to s k i p l i s t ordered by ANGLE −−−−−−−−−−−−−
178f o r ( i n t i = 0 ; i < seg ; ++i )
179{
180++atomic ;
181l = seg s [ i ] ;
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182
183// Add po in t e r s to a l l po in t s back to parent l i n e
184l−>a−>parentLine = l ;
185l−>b−>parentLine = l ;
186
187// Reset v i s i t e d f l a g s
188l−>v i s i t e d = f a l s e ;
189l−>v i s i t e dS t a r tPo i n t = f a l s e ;
190
191i f ( v i s u a l )
192img . d raw l ine ( l−>a−>x , l−>a−>y , l−>b−>x , l−>b−>y , WHITE) ;
193
194i f ( ! ( i == c en t e r i d && isPointA ) ) // po int i s not l i n e A
195{
196i f ( v i s u a l )
197img . d r aw c i r c l e ( l−>a−>x , l−>a−>y , 2 , WHITE) ;
198
199// Ca lcu la te the ang le from cente r l i n e :
200l−>a−>theta = vectorsAngle ( l−>a−>x , l−>a−>y , center−>x , center−>y ) ;
201
202// Sort the v e r t i c i e s :
203ang l eL i s t . add ( l−>a ) ;
204
205// cout << ”Added A f o r l i n e ” << i << ” theta ” << l−>a−>theta << endl ;
206// cout << ”POINT ” ; l−>a−>pr in t ( ) ; cout << endl ;
207}
208
209i f ( ! ( i == c en t e r i d && isPointA == f a l s e ) ) // po int i s not l i n e B
210{
211i f ( v i s u a l )
212img . d r aw c i r c l e ( l−>b−>x , l−>b−>y , 2 , WHITE) ;
213
214// Ca lcu la te the ang le from cente r l i n e :
215l−>b−>theta = vectorsAngle ( l−>b−>x , l−>b−>y , center−>x , center−>y ) ;
216
217// Sort the v e r t i c i e s :
218ang l eL i s t . add ( l−>b) ;
219// cout << ”Added B f o r l i n e ” << i << ” theta ” << l−>b−>theta << endl ;
220
221// cout << ”POINT ” ; l−>b−>pr in t ( ) ; cout << endl ;
222}
223
224// cout << endl ;
225}
226
227
228// Test Sk ipL i s t
229// cout << ”Angle L i s t − po in t s ordered CC from base l i n e ” ;
230// ang l eL i s t . p r i n tA l l ( ) ;
231
232
233// I n i t i a l i z e Edge L i s t Of Lines −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
234f o r ( i n t i = 0 ; i < seg ; ++i )
235{
236++atomic ;
237
238l = seg s [ i ] ; // get next l i n e to check
239
240// check i f the cur rent l i n e i s connected to the cent e r po int
241i f ( l−>id == ( ( Line ∗) center−>parentLine )−>id )
242{
243// one cente r ’ s l i n e
244// cout << ”ONE CENTER’S LINE ! ! ! ” << endl ;
245}
246e l s e
247{
248// Check each l i n e and see i f i t c r o s s e s scan l i n e
249double xi , y i ;
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250l−>c e n t e r i n t e r c e p t ( xi , y i ) ; // these are r e f e r e n c e parameters
251
252// Now we know that xi , y i i s on cente r l i n e .
253// Next we check i f X i s between a & b . We know a . x > b . x , thus :
254i f ( l−>a−>x >= xi && l−>b−>x <= xi )
255{
256// check that x i > center−>x
257i f ( x i >= center−>x )
258{
259
260// I t does i n t e r s e c t
261edgeL i s t . add ( l ) ;
262
263// Mark as opened , somewhere on l i n e
264l−>v i s i t e d = true ;
265
266// V i s ua l i z e :
267i f ( v i s u a l )
268img . d raw l ine ( l−>a−>x , l−>a−>y , l−>b−>x , l−>b−>y , GREEN) ;
269}
270}
271}
272}
273
274i f ( l i v e )
275di sp . d i sp l ay ( img ) ;
276
277// cout << ”Edge L i s t : ” ;
278// edgeL i s t . p r i n tA l l ( ) ;
279
280// Sweep −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
281
282// s l e e p (1 ) ;
283// us l e ep (500∗1000) ;
284f o r ( i n t i = 0 ; i < 2∗ seg − 1 ; ++i )
285{
286++atomic ;
287
288// cout << ”\n\n\n −−−−−−−−−−−−−−− STARTING NEW SWEEP −−−−−−−−−−−−−−−−−− \n\n\n ” ;
289
290// cout << ”SWEEP VERTEX ” << i << endl ;
291// i f ( i > 0 )
292// break ;
293
294// take the f i r s t ver tex in angular order
295p = ang l eL i s t . pop ( ) ;
296// cout << ”Sweep at ” ; p−>pr in t ( ) ;
297
298// Update the c e n t e r l i n e to the sweep l o c a t i o n and update m, b
299c e n t e r l i n e−>b = p ;
300c e n t e r l i n e−>updateCalcs ( ) ;
301
302// Update cen te r po int to conta in theta between ba s e l i n e and
303// cur rent point , so that our l i n e func t i on can cache
304center−>theta = p−>theta ;
305
306// dec ide what to do with i t
307l = ( Line ∗)p−>parentLine ; // ca s t i t
308// cout << ”\ t ” ; l−>pr in t ( ) ;
309
310// check i f the cur rent l i n e i s connected to the cent e r po int
311i f ( l−>id == ( ( Line ∗) center−>parentLine )−>id )
312{
313// one cente r ’ s l i n e
314// igno re
315}
316e l s e i f ( l−>v i s i t e d ) // remove i t from edgeL i s t
317{
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318// cout << ”remove” << endl ;
319
320i f ( ! l−>v i s i t e dS t a r tPo i n t )
321{
322l−>v i s i t e d = f a l s e ; // a l low t h i s l i n e to be v i s i s t e d again f o r i t s s t a r t

po int
323}
324
325// check i f i t s f i r s t in the edge l i s t . i f i t i s , i t s VISIBLE
326i f ( edgeL i s t . i sRoot ( l−>id ) )
327{
328// cout << ”Drawing Line ” << endl ;
329
330i f ( v i s u a l )
331img . d raw l ine ( center−>x , center−>y , p−>x , p−>y , BLUE ) ;
332}
333
334// remove
335// cout << ”Value : ” << l−>value ( ) << ” ” << l−>id << endl ;
336
337edgeL i s t . remove ( l−>value ( ) , l−>id ) ;
338
339i f ( v i s u a l )
340img . d raw l ine ( l−>a−>x , l−>a−>y , l−>b−>x , l−>b−>y , WHITE) ;
341}
342e l s e // add i t to edge l i s t
343{
344// cout << ”add” << endl ;
345l−>v i s i t e d = true ; // mark i t as having been v i s i t e d somewhere
346l−>v i s i t e dS t a r tPo i n t = true ; // mark i t as having found the f i r s t ver tex
347
348// Store d i s t ance o f l i n e from cente r
349l−>d i s t = d i s t ance ( p , c en te r ) ;
350
351edgeL i s t . add ( l ) ;
352
353// check i f i t s f i r s t in the edge l i s t . i f i t i s , i t s VISIBLE
354i f ( edgeL i s t . i sRoot ( l−>id ) )
355{
356// cout << ”Drawing Line ” << endl ;
357i f ( v i s u a l )
358img . d raw l ine ( center−>x , center−>y , p−>x , p−>y , BLUE ) ;
359}
360
361i f ( v i s u a l )
362img . d raw l ine ( l−>a−>x , l−>a−>y , l−>b−>x , l−>b−>y , GREEN) ;
363}
364
365i f ( v i s u a l )
366img . d r aw c i r c l e (p−>x , p−>y , 5 , GREY) ;
367
368//debug
369// cout << ”Edge L i s t : ” ;
370// edgeL i s t . p r i n tA l l ( ) ;
371// ang l eL i s t . p r i n tA l l ( ) ;
372// cout << endl << endl ;
373
374i f ( l i v e )
375{
376di sp . d i sp l ay ( img ) ;
377// us l e ep (1∗1000) ;
378// s l e e p (1 ) ;
379}
380}
381// cout << ” breaking ” << endl ;
382// break ;
383i f ( l i v e )
384{
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385// us l e ep (1∗1000) ;
386di sp . d i sp l ay ( img ) ;
387}
388// break ;
389//img . f i l l (20) ;
390// cout << outer << endl ;
391}
392
393i f ( v i s u a l )
394{
395// Redraw ob s t a c l e l i n e s j u s t f o r fun :
396f o r ( i n t i = 0 ; i < seg ; ++i )
397{
398l = seg s [ i ] ;
399
400img . d raw l ine ( l−>a−>x , l−>a−>y , l−>b−>x , l−>b−>y , WHITE) ;
401img . d r aw c i r c l e ( l−>a−>x , l−>a−>y , 2 , WHITE) ;
402img . d r aw c i r c l e ( l−>b−>x , l−>b−>y , 2 , WHITE) ;
403}
404di sp . d i sp l ay ( img ) ;
405
406
407img . save ( ” r e s u l t . png” ) ; // save the image
408}
409
410cout << seg << ” , ” << atomic << endl ;
411
412i f ( v i s u a l )
413{
414// Show window un t i l use r input :
415whi le ( ! d i sp . i s c l o s e d ( ) ) {
416i f ( d i sp . is keyESC ( ) )
417break ;
418di sp . wait ( ) ;
419}
420}
421
422// Garabage c o l l e c t
423// d e l e t e [ ] s eg s ;
424// f r e e ( s eg s ) ;
425}
426
427//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
428// Ca lcu la te Angle Btw 2 Vectors
429//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
430double vectorsAng le ( i n t x , i n t y , i n t basex , i n t basey )
431{
432// Convert input po int x & y to be ve c to r s r e l a t i v e to base po int
433double x2 = double ( x − basex ) ;
434double y2 = double ( y − basey ) ;
435
436// Hard code scan l i n e to po int r i g h t :
437double x1 = sq r t ( x2∗x2 + y2∗y2 ) ; // make i t with r a t i o ?
438double y1 = 0 . 0 ;
439
440// cout << ”x1 : ” << x1 << ” − y1 : ” << y1 << endl ;
441// cout << ”x2 : ” << x2 << ” − y2 : ” << y2 << endl ;
442
443double s t u f f = ( ( x1∗x2 )+(y1∗y2 ) ) / ( sq r t ( x1∗x1+y1∗y1 ) ∗ s q r t ( x2∗x2+y2∗y2 ) ) ;
444// cout << ” S tu f f : ” << s t u f f << endl ;
445
446// Ca lcu la te ang le :
447double r e s u l t = acos ( s t u f f ) ;
448// cout << ”Result : ” << r e s u l t << endl ;
449
450// Now add PI i f below middle l i n e :
451i f ( y >= basey )
452r e s u l t = 2∗M PI − r e s u l t ;
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453
454// cout << ”Result : ” << r e s u l t ∗180/M PI << ” degree s ” << endl ;
455
456r e turn r e s u l t ;
457}
458//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
459// Distance Btw 2 Points
460//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
461double d i s t ance ( Point ∗ a , Point ∗ b )
462{
463r e turn sq r t ( pow(b−>x − a−>x , 2 . 0 ) + pow(b−>y − a−>y , 2 . 0 ) ) ;
464}

../visibility graph/vgraph.cpp
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skiplist.h

1/∗ Skip L i s t
2CSCI 5454 Algorithms
3Dave Coleman | david . t . coleman@colorado . edu
4
52/2/2012
6
7Implementation o f Skip L i s t s
8∗/
9
10#inc lude <math . h>
11#inc lude <iostream>
12#inc lude <c s t d l i b>
13#inc lude ”node . h”
14//#inc lude ” po int . h”
15us ing namespace std ;
16
17// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
18// Skip L i s t Class
19// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
20template <c l a s s T>
21c l a s s s k i p l i s t {
22// used f o r t e s t i n g
23pub l i c :
24i n t maxLevel ;
25
26pr i va t e :
27node<T> ∗ root ;
28
29// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
30// Get Random Level
31// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
32i n t getRandLevel ( )
33{
34i n t randResult = 1 ;
35i n t l e v e l = 0 ;
36whi le ( randResult )
37{
38
39randResult = rand ( ) % 2 ;
40i f ( randResult )
41{
42++l e v e l ;
43}
44
45i f ( l e v e l > maxLevel )
46{
47randResult = 0 ; // to end the whi l e loop
48}
49}
50r e turn l e v e l ;
51
52}
53// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
54// Create New Node
55// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
56node<T>∗ createNode ( i n t l e v e l , i n t height , T data )
57{
58// Check i f we are below l e v e l 0
59i f ( l e v e l < 0)
60{
61r e turn NULL;
62}
63e l s e // make a new node below
64{
65node<T> ∗newNode = new node<T>() ;
66newNode−>l e v e l = l e v e l ;
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67newNode−>next = NULL;
68newNode−>below = createNode ( l e v e l − 1 , height , data ) ;
69newNode−>he ight = he ight ;
70newNode−>data = data ;
71r e turn newNode ;
72}
73}
74
75pub l i c :
76
77// Constructor :
78s k i p l i s t ( )
79{
80root = NULL;
81maxLevel = 0 ;
82
83srand ( time (NULL) ) ; // seed the random genera tor
84}
85// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
86// ADD
87// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
88void add ( T data )
89{
90// cout << ”ADD: ” ;
91//data . p r i n t ( ) ;
92
93// Spe c i a l Cases −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
94
95i f ( ! root ) // no root has been e s t ab l i s h ed yet
96{
97root = createNode ( 0 , 0 , data ) ;
98r e turn ;
99}
100
101i f ( root−>data−>value ( ) > data−>value ( ) ) // new value goes be f o r e root
102{
103T temp data = root−>data ;
104node<T> ∗n = root ;
105
106f o r ( i n t l = maxLevel ; l >= 0 ; −− l )
107{
108atomic += 1 ;
109// change the root to the new value
110n−>data = data ;
111n = n−>below ;
112}
113data = temp data ;
114}
115
116// Regular i n s e r t a f t e r root −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
117
118// Determine what l e v e l t h i s new node w i l l be at
119i n t l e v e l = getRandLevel ( ) ;
120
121// I f new node i s at whole new l e v e l , go ahead and update root node to be h igher
122i f ( l e v e l > maxLevel )
123{
124maxLevel ++;
125node<T> ∗newRoot = new node<T>() ;
126newRoot−>data = root−>data ;
127newRoot−>next = NULL;
128newRoot−>below = root ;
129newRoot−>l e v e l = maxLevel ;
130root = newRoot ;
131}
132
133// Create the new node
134node<T> ∗newNode = createNode ( l e v e l , l e v e l , data ) ;
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135
136// Now add the node to the l i s t
137node<T> ∗ i = root ;
138
139// Loop down through a l l l e v e l s
140f o r ( i n t l = maxLevel ; l >= 0 ; −− l )
141{
142atomic += 1 ;
143// move forward un t i l we h i t a va lue g r e a t e r than ours
144whi le ( i−>next != NULL )
145{
146atomic += 1 ;
147i f ( i−>next−>data−>value ( ) > data−>value ( ) ) // i n s e r t be f o r e i . next
148{
149break ;
150}
151i = i−>next ;
152}
153
154// Check i f we should add a po in t e r at t h i s l e v e l
155i f ( l <= l e v e l )
156{
157newNode−>next = i−>next ;
158i−>next = newNode ;
159
160// Now move the new node po in t e r one l e v e l down :
161newNode = newNode−>below ;
162}
163
164// Always move the i node po in t e r one l e v e l down :
165i = i−>below ;
166}
167
168}
169// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
170// Find
171// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
172bool f i nd ( double x )
173{
174node<T> ∗ i = root ;
175
176// Spe c i a l case : sk ip l i s t i s empty
177i f ( ! root )
178{
179r e turn f a l s e ;
180}
181
182// Spe c i a l case : check root
183i f ( root−>data−>value ( ) == x)
184{
185r e turn true ;
186}
187
188f o r ( i n t l = maxLevel ; l >= 0 ; −− l )
189{
190atomic += 1 ;
191// move forward un t i l we h i t a va lue g r e a t e r than ours
192whi le ( i−>next != NULL )
193{
194atomic += 1 ;
195i f ( i−>next −>data−>value ( ) > x ) // x i s not found on t h i s l e v e l
196{
197break ;
198}
199e l s e i f ( i−>next−>data−>value ( ) == x ) // bingo !
200{
201r e turn true ;
202}
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203
204i = i−>next ;
205}
206
207// Always move the i node<T> po in t e r one l e v e l down :
208i = i−>below ;
209}
210
211r e turn f a l s e ;
212}
213// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
214// REMOVE
215// the id i s to conf i rm the c o r r e c t node , j u s t in case x i s not unique
216// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
217bool remove ( double x , i n t id )
218{
219node<T> ∗ i = root ;
220
221// Spe c i a l case : remove root −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
222i f ( root−>data−>value ( ) == x && root−>data−>id == id )
223{
224// Get l e v e l 0 o f root
225f o r ( i n t l = root−>l e v e l ; l > 0 ; −− l )
226{
227atomic += 1 ;
228// cout << ”Leve l ” << l << endl ;
229i = i−>below ;
230}
231
232// Check i f the re are any more nodes
233i f ( ! i−>next ) // the sk ip l i s t i s empty
234{
235root = NULL;
236maxLevel = 0 ;
237
238r e turn true ;
239}
240
241// Change value o f root to next node
242node<T> ∗n = root ;
243node<T> ∗nextNode = i−>next ;
244
245f o r ( i n t l = maxLevel ; l >= 0 ; −− l )
246{
247atomic += 1 ;
248// change the root to the new value
249n−>data = nextNode−>data ;
250
251// update next po in t e r i f the next next e x i s t s
252i f ( n−>next )
253{
254n−>next = n−>next−>next ;
255}
256
257// Move down to next l e v e l
258n = n−>below ;
259}
260
261r e turn true ;
262}
263
264// Normal case : remove a f t e r root −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
265bool found = f a l s e ;
266
267f o r ( i n t l = maxLevel ; l >= 0 ; −− l )
268{
269atomic += 1 ;
270// move forward un t i l we h i t a va lue g r e a t e r than ours
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271whi le ( i−>next != NULL )
272{
273atomic += 1 ;
274// remove t h i s one , conf irmed by id
275i f ( i−>next−>data−>value ( ) == x && i−>next−>data−>id == id )
276{
277found = true ;
278
279// pass through the po in t e r i f e x i s t s
280i f ( i−>next )
281{
282i−>next = i−>next−>next ;
283}
284e l s e
285{
286i−>next = NULL;
287}
288break ;
289}
290e l s e i f ( i−>next−>data−>value ( ) > x ) // x i s not found on t h i s l e v e l
291{
292break ;
293}
294
295i = i−>next ;
296}
297
298// Always move the i node po in t e r one l e v e l down :
299i = i−>below ;
300}
301
302r e turn found ;
303}
304// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
305// POP FROM FRONT
306// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
307T pop ( )
308{
309node<T> ∗ i = root ;
310
311// Store the f i r s t item on the l i s t that we want to l a t e r re turn
312T r e s u l t = root−>data ;
313/∗
314cout << ”POP WITH VALUE: ” << root−>value << ” − ” ;
315r e s u l t . p r i n t ( ) ;
316cout << endl ;
317∗/
318
319// Check i f sk ip l i s t i s empty
320i f ( ! root )
321{
322cout << ”An e r r o r has occured : sk ip l i s t i s empty” ;
323e x i t (1 ) ;
324}
325
326// Get l e v e l 0 o f root
327f o r ( i n t l = root−>l e v e l ; l > 0 ; −− l )
328{
329atomic += 1 ;
330i = i−>below ;
331}
332
333// Check i f the re are any more nodes
334i f ( ! i−>next ) // the sk ip l i s t i s empty
335{
336root = NULL;
337maxLevel = 0 ;
338
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339r e turn r e s u l t ;
340}
341
342// Change value o f root to next node
343node<T> ∗n = root ;
344node<T> ∗nextNode = i−>next ;
345
346f o r ( i n t l = maxLevel ; l >= 0 ; −− l )
347{
348atomic += 1 ;
349// change the root to the new value
350n−>data = nextNode−>data ;
351
352// update next po in t e r i f the next next e x i s t s
353i f ( n−>next )
354{
355n−>next = n−>next−>next ;
356}
357
358// Move down to next l e v e l
359n = n−>below ;
360
361}
362
363r e turn r e s u l t ;
364}
365// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
366// I s Root
367// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
368bool i sRoot ( i n t id )
369{
370
371i f ( ! root ) // the re i s no root !
372{
373std : : cout << ” there i s no root ! ” << std : : endl ;
374r e turn f a l s e ;
375}
376r e turn ( root−>data−>id == id ) ;
377}
378// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
379// PRINT ALL
380// −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
381void p r i n tA l l ( )
382{
383std : : cout << std : : endl << ”LIST −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−” << std : : endl ;
384
385// Spe c i a l case : s k i p l i s t i s empty
386i f ( ! root )
387{
388std : : cout << ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−” << std : : endl ;
389r e turn ;
390}
391
392node<T> i = ∗ root ;
393
394// Get l e v e l 0 o f root
395f o r ( i n t l = root−>l e v e l ; l > 0 ; −− l )
396{
397// cout << ”Leve l ” << l << ” − ” ;
398// i . data . p r i n t ( ) ;
399// cout << endl ;
400i = ∗( i . below ) ;
401}
402// std : : cout << ”we are on l e v e l ” << i . l e v e l << std : : endl ;
403
404// Hack : update root 0 l e v e l with maxLevel count , because we don ’ t update t h i s
405// when growing root l e v e l s i z e
406i . he ight = maxLevel ;
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407
408i n t counter = 0 ;
409bool done = f a l s e ;
410
411whi le ( ! done )
412{
413std : : cout << counter ;
414
415f o r ( i n t l = i . he ight ; l >= 0 ; −− l )
416{
417std : : cout << ” | ” ;
418}
419std : : cout << ” ” << i . data−>value ( ) << ” − ” ;
420i . data−>pr in t ( ) ;
421
422counter ++;
423
424i f ( i . next )
425{
426node<T> ∗ i i = i . next ;
427i = ∗ i i ;
428}
429e l s e
430{
431done = true ;
432}
433}
434
435std : : cout << ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−” << std : : endl << std : : endl ;
436}
437} ;

../visibility graph/skiplist.h
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node.h

1#inc lude ” l i n e . h”
2
3//

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

4// Node Class
5//

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

6template <c l a s s T>
7c l a s s node{
8pub l i c :
9node ∗below ; // node below in tower
10node ∗next ; // next node in sk ip l i s t
11i n t l e v e l ; // l e v e l o f t h i s cur r ent node
12i n t he ight ; // f u l l number o f l e v e l s in tower
13T data ;
14} ;

../visibility graph/node.h
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line.h

1#i f n d e f LINE H INCLUDED
2#de f i n e LINE H INCLUDED
3
4#inc lude <iostream>
5#inc lude ” po int . h”
6#inc lude ”geometry . h”
7#inc lude <cmath>
8
9c l a s s Line : pub l i c Geometry
10{
11pub l i c :
12Point ∗ a ;
13Point ∗ b ;
14bool v i s i t e dS t a r tPo i n t ; // has the base /sweep l i n e c ro s s ed at l e a s t one o f
15// the v e r t i c i e s ?
16bool v i s i t e d ; // has the sweep l i n e been on the l i n e ( as in , maybe i t was i n i t on i t )
17
18i n t id ;
19double d i s t ; // d i s t anc e from cente r
20double the ta cache ; // used f o r dec id ing i f the d i s t cache needs to be r e f r e s h ed
21double m; // s l ope o f l i n e
22double y i n t e r c e p t ; // y−i n t e r c e p t o f l i n e
23
24Line ( ) ;
25Line ( i n t x1 , i n t y1 , i n t x2 , i n t y2 ) ;
26˜Line ( ) ;
27v i r t u a l void p r i n t ( ) ;
28v i r t u a l double va lue ( ) ;
29
30void updateCalcs ( ) ;
31void d i s t anc e ( ) ;
32void c e n t e r i n t e r c e p t ( double &xi , double &y i ) ;
33} ;
34
35
36// This g l oba l needs to be v i s i b l e to c l a s s e s :
37extern Point ∗ c en te r ;
38extern Line ∗ c e n t e r l i n e ;
39extern double atomic ;
40
41#end i f

../visibility graph/line.h

line.cpp

1#inc lude ” l i n e . h”
2
3Point ∗ c en te r ;
4Line ∗ c e n t e r l i n e ;
5double atomic ;
6
7us ing namespace std ;
8
9Line : : Line ( )
10{
11cout << ”You are c a l l i n g the func t i on wrong” ;
12e x i t (0 ) ;
13}
14Line : : Line ( i n t x1 , i n t y1 , i n t x2 , i n t y2 )
15{
16// Order a and b such that a . x > b . x
17i f ( x1 > x2 )
18{
19a = new Point ( x1 , y1 ) ;
20b = new Point ( x2 , y2 ) ;
21}
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22e l s e
23{
24b = new Point ( x1 , y1 ) ;
25a = new Point ( x2 , y2 ) ;
26}
27
28// Change ID
29s t a t i c i n t i d count e r = 0 ;
30id = id count e r++;
31
32// Keep track o f i t s v i s i t e d h i s t o r y
33v i s i t e d = f a l s e ;
34v i s i t e dS t a r tPo i n t = f a l s e ;
35
36// cout << ”LINE” << endl ;
37updateCalcs ( ) ;
38
39// cout << ”LINE” << endl ;
40
41// Used f o r check ing i f we need to r e f r e s h our d i s t anc e amount
42the ta cache = 3∗M PI ; // some ang le b i gge r than 2PI , aka INF
43// d i s t anc e ( ) ;
44
45// cout << ”END LINE \n” << endl ;
46}
47Line : : ˜ Line ( )
48{
49// d e l e t e a ;
50// d e l e t e b ;
51}
52void Line : : p r i n t ( )
53{
54cout << ”Line : x1 : ” << a−>x << ” y1 : ” << a−>y << ” x2 : ” << b−>x
55<< ” y2 : ” << b−>y << ”\ t ID : ” << id << endl ;
56}
57double Line : : va lue ( )
58{
59// c a l c u l a t e d i s t ance from midpoint at a g iven theta ,
60// with r e s ep c t to the ba s e l i n e
61
62i f ( the ta cache != center−>theta ) // check i f our cached ve r s i on i s s t i l l f r e s h enough
63{
64// cout << ”Reca l cu la ing d i s t ance f o r l i n e ” << id << endl ;
65d i s t ance ( ) ;
66}
67
68r e turn d i s t ;
69}
70void Line : : updateCalcs ( )
71{
72// Find Slope and y−i n t e r c e p t o f t h i s l i n e f o r f u tu r e d i s t ance c a l c u l a t i o n s
73double denom = (b−>x − a−>x ) ;
74i f ( denom == 0 )
75{
76// cout << ”This program does not support p e r f e c t l y v e r t i c l e l i n e s . ” << endl ;
77// e x i t (0 ) ;
78
79// Perturb :
80// b−>x = b−>x + 1 ;
81denom = 0.000000001 ; // (b−>x − a−>x ) ;
82}
83m = (b−>y − a−>y ) /denom ;
84
85// cout << m << ” M ” << endl ;
86
87y i n t e r c e p t = a−>y − m∗a−>x ;
88// cout << y i n t e r c e p t << ” m ” << endl ;
89}
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90void Line : : d i s t anc e ( )
91{
92// F i r s t f i nd the i n t e s e c t i o n o f t h i s l i n e and the sweep l i n e :
93double x i ;
94double y i ;
95c e n t e r i n t e r c e p t ( xi , y i ) ;
96
97// cout << ”The i n t e r c e p t i s x : ” << x i << ” y : ” << y i << endl ;
98// cout << ”M: ” << m << ” b : ” << y i n t e r c e p t << endl ;
99
100// Now f i nd the d i s t ance between these two l i n e s :
101d i s t = sq r t ( pow( center−>x − xi , 2 . 0 ) + pow( center−>y − yi , 2 . 0 ) ) ;
102
103// cout << ”Distance : ” << d i s t << endl << endl ;
104the ta cache = center−>theta ;
105}
106
107void Line : : c e n t e r i n t e r c e p t ( double &xi , double &y i )
108{
109x i = double ( y i n t e r c e p t − c e n t e r l i n e−>y i n t e r c e p t ) / double ( c e n t e r l i n e−>m − m ) ;
110y i = m∗ x i + y i n t e r c e p t ;
111}

../visibility graph/line.cpp
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point.h

1#i f n d e f POINT H INCLUDED
2#de f i n e POINT H INCLUDED
3
4#inc lude <iostream>
5#inc lude ”geometry . h”
6
7c l a s s Point : pub l i c Geometry
8{
9pub l i c :
10i n t x ;
11i n t y ;
12void ∗ parentLine ;
13i n t id ; // f o r removing , comparing , e t c
14double theta ; // ang lu l a r amount from base l i n e
15
16Point ( ) ;
17Point ( i n t x1 , i n t y1 ) ;
18
19v i r t u a l void p r i n t ( ) ;
20v i r t u a l double va lue ( ) ;
21} ;
22
23#end i f

../visibility graph/point.h

point.cpp

1#inc lude ” po int . h”
2
3
4Point : : Point ( )
5{
6s t a t i c i n t i d count e r = 0 ;
7id = id count e r++;
8}
9Point : : Point ( i n t x1 , i n t y1 )
10{
11x = x1 ;
12y = y1 ;
13Point ( ) ;
14}
15void Point : : p r i n t ( )
16{
17std : : cout << ”Point x : ” << x << ” y : ” << y << ” \ t ID : ” << id << std : : endl ;
18}
19double Point : : va lue ( )
20{
21// t h i s i s the angular d i s t ance from the base l i n e
22// f o r po int . cpp , we j u s t cache the i n i t i a l c a l c u l a t i o n
23r e turn theta ;
24}

../visibility graph/point.cpp
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geometry.h

1#i f n d e f GEOMETRYH INCLUDED
2#de f i n e GEOMETRYH INCLUDED
3
4c l a s s Geometry
5{
6pub l i c :
7// i n t id ; // f o r removing , comparing , e t c
8
9v i r t u a l void p r i n t ( ) = 0 ;
10v i r t u a l double va lue ( ) = 0 ;
11
12} ;
13
14#end i f

../visibility graph/geometry.h
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Matlab plot.m Used For Generating Plots

1c l e a r
2c l c
3
4data = csvread ( ’ data . cvs ’ )
5
6n = data ( : , 1 )
7l o gge r1 = 50 .∗ ( n . ˆ 2 ) .∗ l og ( n ) ;
8l o gge r2 = 25 .∗ ( n . ˆ 2 ) .∗ l og ( n ) ;
9
10l o g l o g ( data ( : , 1 ) , data ( : , 2 ) , ’ bo− ’ , . . .
11data ( : , 1 ) , logger1 , ’ k : ’ , data ( : , 1 ) , l ogger2 , ’ k : ’ )
12
13
14s e t ( gca , ’ FontSize ’ ,14)
15
16l egend ( ’Number o f lookups ’ , ’O(nˆ2 log n) ’ , ’ Locat ion ’ , ’ NorthWest ’ )
17x l ab e l ( ’ Input s i z e , n ’ )
18y l ab e l ( ’Number o f operat ions , T ’ )
19t i t l e ( ’ Atomic Operat ions o f Lee V i s i b i l i t y Graph Algorithm ’ ) ;

../visibility graph/plot.m

Runtime Data Restuls

19 ,6026
225 ,62585
3100 ,1 .42313 e+06
4289 ,1 .47751 e+07
5961 ,2 .34027 e+08
63136 ,2 .914 e+09

../visibility graph/data.cvs
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