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Abstract— In this paper it is demonstrated that obstacle 
avoidance and shortest-route path planning, traditionally highly 
non-linear problems, can be modeled as linear problem and 
solved as a mixed integer programming. In particular, any 
number of obstacles each reduced to convex polygons can be 
navigated in two dimensions using discretized time steps from an 
initial to target point. A benefit of this approach is the problem 
can be readily solved with off the shelf optimization software 
such as GLPK. A simple implementation is presented with 
visualizations and computational efficiency results are discussed. 
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I.  INTRODUCTION 
Robot navigation is a well-developed field to which many 

existing solutions already exist. Grid-based search, geometric 
algorithms, potential fields and sampling-based algorithms are 
all common methods for reducing a set of known obstacles, a 
start configuration and a goal configuration into a set of 
feasible continuous motions [1][2]. 

This work is an extension of two previous papers work on 
obstacle avoidance and takes their methods a step further.  
Shukla et. al. proposes a linear programming-based approach 
for optimizing the path of a robot arm in an obstacle oriented 
work cell [3]. It is imagined that a 3-dof overhead gantry robot 
is navigating a workspace consisting of various obstacles. It is 
assumed that every obstacle can be approximated as being 
cloaked with rectangle and that the robot arm path is only has 
to avoid one obstacle at a time. This assumes that obstacles are 
never within close proximity or partially overlapping. The LP 
problem is then two solve the shortest of only 3 potential paths 
– going left, going right or going above the rectangle. While 
computationally very efficient, it is felt that the assumptions are 
to constraining to any practical real-world application. 

More recent work on obstacle avoidance and path planning 
by Schouwenaars et. al. proposes a new approach to fuel-
optimal path planning of multiple vehicles using a both linear 
and integer programming [4]. In this work it is demonstrated 
that stationary and moving obstacles can be planned along with 
multiple other moving vehicles at the same time. Both time and 
fuel is optimized using space equations of a dynamical system. 
Again, the assumption of rectangular obstacles are assumed 
and more complex convex polygons are ignored.  

This paper presents the various stages of development of 
the presented ILP problem and describes the reasoning behind 
the various chosen constraints and values. A software 
implementation using the Modeling Language for 
Mathematical Programming (AMPL) and GNU Linear 
Programming Kit (GLPK) with a C++ and OpenGL interface 
to solve the mathematical program is presented. Finally a 
comparison of the computational time for various sized 
polygons is presented. 

II. BASIC OBSTACLE AVOIDANCE OF RECTANGLE 
Initially the work of Shukla was replicated in two 

dimensions where the LP problem was simply to choose 
between moving left or right around a rectangle to optimize the 
distance traveled to a goal point.  

 
 
 
 
 
 
 
 
 

Figure 1.  Two possible paths to travel: to the left of the obstacle or to the 
right. 

To move around a triangle at most two points need to be 
found, 𝑥! and 𝑥!, as shown in Figure 1. The constraints on 
these two points change depending on whether the shortest path 
is to the left or to the right of the triangle. This decision is 
described in the LP program by adding two binary decision 
variables A and B. Both A and B must be the values of 0 or 1 
and only one can be true at a time. As such, when the LP 
program solves the variable A to be 1, the optimal path is to the 
left, and when the program, solves B to be 1, the optimal path 
is to the right.  

Using these two variables A and B, the proper constraints 
can be enabled by multiplying the binary variables by the 
obstacle’s dimensions. For instance, the x component of the 𝑥! 
and 𝑥! coordinates must both be less then the left hand side of 
the obstacle when path A is chosen, but must be greater than 
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the right hand side of the rectangle when path B is chosen. This 
can be expressed in AMPL format as the following: 

var A, binary; (1) 
var B, binary;  

c1: A + B = 1; 
c2: 0         * A  + xobstacle_right * B <= x1; 
c3: xobstacle_left* A  + xworld  * B >= x1; 

 

Distance is calculated using a one-norm approximation, or 
Manhattan distance, to keep the problem linear. The objective 
function is thus to minimize the absolute value between each 
set of x and y points. Elimination of each absolute value 
requires that a new variable be added for representing absolute 
values in a linear function. The following AMPL expression is 
then created: 

minimize distance: abs1 + abs2 + .. ;   (2) 
a1:  x1  - xi - abs1 <= 0;  
a2: -x1 + xi - abs1 <= 0;  
a3:  y1  - yi - abs2 <= 0; 
a4: -y1 + yi - abs2 <= 0; 

A testing program is run to visualize the results of this basic 
planning optimizer and example results are shown in Figure 2. 
It should be noted that the solution path directly grazes the 
obstacle in both examples because the classic assumption has 
been made that the obstacles have already been enlarged to 
account for the size of the moving object, reducing the object 
itself to a moving point [1]. 

 
Figure 2.  Two examples of a solved path from the initial bottom point to the 

goal top point around a rectangle obstacle. 

As is readily evident in Figure 2, the results of Shukla’s LP 
algorithm are not the optimal path around the obstacle due to 
the sharp right angle taken at the two turns. The optimal path 
would follow a diagonal path directly from the initial position 
to the bottom corner of the obstacle, and from the top corner of 
the obstacle to the goal point. To improve this path planning 
model, this author modified the original LP problem’s 
objective function to increase the “importance’ or cost of the 
distance between the midpoints points 𝑥!  and 𝑥! . This was 
accomplished by simply multiplying the distance in the x and y 
directions for these points in the objective function by 2. The 
modified objective function then looked like the following:  

minimize distance: abs1 + abs2 + abs3 + 2*abs4 + 2*abs5  (3) 
 + 2*abs6 + abs7 + abs8 + abs9;  

The results were a set of points that followed the optimal 
path around the rectangular obstacle, as shown in Figure 3. The 
entire AMPL model of this implementation can be found in 
Appendix A of this paper. 

 

 
Figure 3.  Two examples with same intial and goal locations as in Figure 4 

but with optimal path objective function variation. 

 

III. OBSTACLE AVOIDANCE OF CONVEX POLYGON 
The previous implementation suffers from the need to have 

the start position below the rectangle, the goal position above 
the rectangle and no more than one obstacle of rectangular 
shape oriented normal to the axis. The following is a highly 
modified LP model of the previous problem that works for any 
number of arbitrary convex polygons in 2 dimensions. An 
example of its ability is demonstrated in Figure 4. The entire 
AMPL file for this implementation is presented in Appendix B. 

  
Figure 4.  Example of obstacle avoidance of convex polygon 

A. Convex Polygon 
It is assumed that each obstacle is presented as an ordered 

list of points that already form a convex polygon. If a non-
convex obstacle is desired to be included, use of a preexisting 
method for computing the convex hull such as the Graham scan 
must be first run [5]. 

B. Time Steps 
In the previous implementation of a rectangular obstacle 

avoidance scheme most of the problem parameters were 
already known and hard-coded into the solution. In contrast, 
this second implementation only assumes the location of the 
start and goal points are in a non-conflicting state, i.e. not 
within an obstacle. Their location within the solution space is 



allowed to be anywhere. Additionally, it is important that this 
second implementation work for any number of obstacles each 
with any number of edges. It is therefore impossible to hard 
code a pre-determined number of paths and solution points. 

As such, in this LP implementation, N number of time step 
coordinates are added. Each coordinate consists of an x and y 
point that are each treated as problem variables in the LP 
problem. Constraints are added for each time step point such 
that there must be at least 0.5 units and no more than 1 units of 
absolute one-norm distance from the previous time step point. 

The purpose of the 0.5 units of distance minimum between 
points is to ensure forward progress of the solution path and 
prevent all of the points from clustering at one location. The 
purpose of the 1 unit of distance maximum between points is to 
ensure that obstacles are not bypassed or “jumped” over by 
having two consecutive points locate themselves on opposite 
sides of an obstacle, forcing the path into the impossible 
condition of cutting through an obstacle. Still, the maximum of 
1 unit allows the corners of obstacles to be slightly “cut” as 
shown in Figure 5. This condition is addressed by remembering 
that obstacles are enlarged to account for the size of moving 
object and can be further increased as needed. Decreasing the 
maximum spacing between time step points would reduce the 
amount of corner cutting but at the cost of computation.  

 
Figure 5.  Corner-cutting issue demonstrated 

The calculation of how many time steps N are necessary to 
find an optimum path is still an area of further research. 
Currently it is found by calculating the one-norm distance 
between the initial and goal points and increasing that number 
by 20%. Setting the number of time steps N too low can result 
in the LP problem becoming infeasible because of insufficient 
“stretch” of the path to go around the obstacle. Setting N too 
high can result in the path “over crowding” or overlapping such 
that the path take unnecessary diversions, such as shown in 
Figure 6.  

 

 
Figure 6.  Too many time-step points results in unnecessary diversion and 

sub-optimal path. 

C. Adding Polygon Constraints 
For a solution space of T time steps, P polygons each with 

E edges, 𝑇×𝑃×𝐸 number of constraints are added to the LP 
program. For each polygon an or statement is created using an 
binary variable that requires at least one of the E number of 
edge constraints to be true for every point in the path. An edge 
constraint is easily represented by using the two-point form of a 
line and solving for x and y.   

 𝑚 = !!!!!
!!!!!

 (4) 

 −𝑚𝑥 + 𝑦   ≤ 𝑦! −𝑚𝑥! (5) 

Where x and y are the problem variables. Value m and the 
right hand side of (5) are pre-computed in the C++ interface to 
reduce redundant computation in the AMPL file.  

The direction of the equality sign in (5) must be chosen 
based on whether the edge of the polygon it represents is facing 
up or down with respect to one of the axis as shown in Figure 
7. The y-axis is chosen as the determining axis based on 
intuition and the C++ interface is once again utilized to pre-
process the facing direction of each edge. This is accomplished 
by first finding the minimum and maximum x values in the set 
of points in the polygon. The points are then looped through 
starting at the point with the minimum x value in a counter-
clockwise direction until the point with the maximum x value 
is reached. All of the points in this half of the polygon are set to 
face down. The loop then continues until it reaches the 
minimum x value again. The points in the second half of the 
polygon are set to face up. This face up/face down setting is 
represented by giving each point a directionality parameter of 
either -1 for down or 1 for up. This variable can then be used in 
the AMPL format to change the direction of each edge 
constraint equation.  

 
 
 
 
 
 
 
 
 
 

Figure 7.  A polygon’s edges pointing either up or down 



A special case exception of the above method for adding 
edge constraints is when a line is exactly vertical and parallel 
with the y-axis. In this condition the slope m is undefined 
because the denominator is 0. To avoid this issue a pre-
processing check in C++ is preformed that checks for any two 
equal consecutive x values. If one is found, one of the points is 
artificially perturbed by adding a small number, in this case 
0.1. The amount 0.1 was chosen after the value 0.01 was 
demonstrated to occasionally present unsolvable problems, 
most likely due to rounding errors. 

The afore described edge constraints are described in two 
lines in the AMPL file. 

s.t. obstacles{t in TT, e in Edges}:  (6) 
   obst[e,3]*obst[e,1]*points[t,1]-obst[e,3]*points[t,2] <=  
   -obst[e,3]*obst[e,2] + M*orer[t,e];   

s.t. obstOR{t in TT}: sum{e in Edges} orer[t,e] <= E-1;  (7) 

 

Where obst is an array of edges e describing at index 1 the 
slope m, at index 2 the right hand value of the constraint, and at 
index 3 the direction of the constraint. The variable orer 
represents the binary variable for the or condition. M is an 
arbitrarily large number that in this problem is set to 1,000. If 
set to 10,000 it was found to significantly increase the 
computation time of the LP problem. 

 

D. Simulating Quadratic Distance 
Similarly to Shukla’s implementation of rectangular path 

planning, this algorithm suffers from the non-optimal solution 
of one norm distance measurements. This implementation’s 
objective function is the sum of the absolute value of each 
point’s one norm distance to the next point.  

  𝑚𝑖𝑛 𝑥! − 𝑥!!! +    𝑦! − 𝑦!!!!!!
!!!  (8) 

 

This results in the LP problem having no notion of diagonal 
lines for shorter paths. This notion is introduced into the LP 
problem by adding an additional objective component – 
minimizing the difference between the change in the x and y 
component for each point. 

 𝑚𝑖𝑛 𝑥! − 𝑥!!! +    𝑦! − 𝑦!!!!!!
!!!   +       (9)  

   0.5 ∗ 𝑥! − 𝑥!!! −    𝑦! − 𝑦!!!!!!
!!!    

This second half of the objective function encourages more 
horizontal movements – equal changes in the x and y direction 
– to occur. The 0.5 weight reduction factor ensures that the 
diagonal traverse movement is considered less important than 
overall shortest-path optimization and is necessary to prevent 
path wandering. 

This addition to the objective function is effective in 
increasing the number of 45° path angles but is unable to 
encourage translations of any other angle such as 30° or 60°. 
Still, it is more optimal than using only a taxi-cab grid. 

 

IV. RESULTS 
The previously described AMPL model is solved using 

GLPK that is run from within a custom written C++ program. 
All adjustable parameters of the model including start and end 
location, polygon shapes and the number of time steps are 
passed to the AMPL model via a data.dat file that is written by 
the C++ program. Once GLPK finished solving the LP 
problem, the results are written to a results.dat file and re-read 
into the C++ program. The program then draws the obstacle 
and solved path using OpenGL. 

The following table shows the results of 5 scenarios and 
their required computation time on a 2 Ghz Quad Core i7 
MacBook Pro running with an Ubuntu virtual machine. The 
screenshots of each result is then shown after. 

TABLE I.  OBSTACLE AVOIDANCE COMPUTATION TIME 

 Edges GLPK Time Figure # 

1 4 0.6 s Figure 8 

2 4 2.9 s Figure 9 

3 5 1.5 s Figure 10 

4 5 2.6 s Figure 11 

5 6 3.1 s  Figure 12 

6 8 0.2 s Figure 13 

 

 
Figure 8                                      Figure 9 

 

 
Figure 10                                Figure 11 

 



 
Figure 12                                 Figure 13 

 

V. FUTURE WORK 
Because the number of time steps N directly correlates to 

the computational time needed to solve a problem, finding the 
best value for N is an area of future work. Better handling of 
the corner-cutting issue is another area of future work. Finally, 
applying this method to a third dimension of path planning is a 
large area of exploration. 

 

 

VI. CONCLUSION 
The proposed method of path planning around polygon-

shaped obstacles still has many issues to over come before 
being a practical algorithm. The method had very poor 
computational efficiency, requiring 𝑇×𝑃×𝐸  number of 

constraints and a huge number of variables. In the 8-edge 
example shown in Figure 13 the generated LP problem 
contained 186 rows, 138 columns and 77 binary integer 
variables. Overall, there are many more-efficient methods for 
planning around obstacles than the presented LP problem in 
this paper. 
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Appendix A: Rectangular Obstacle Avoidance 
 

# Parameters --------------------------------------------------------- 
 
# Initial Point: 
param xi; param yi; param zi; 
 
# Final Point: 
param xf; param yf; param zf; 
 
# Obstacle Coordinates 
param xo1; param yo1; param zo1; 
param xo2; param yo2; param zo2; 
param xo3; param yo3; param zo3; 
param xo4; param yo4; param zo4; 
 
# Workspace Constraints 
param xm; param ym; param zm; 
 
# Variables to Solve for --------------------------------------------- 
 
var x1; var y1; var z1; # first point 
var x2; var y2; var z2; # second point 
var abs1; var abs2; var abs3; var abs4; var abs5; var abs6; # absolute values 
var abs7; var abs8; var abs9; var abs10;  # absolute values 
var A, binary; var B, binary; # path choices 
 
# Problem ----------------------------------------------------------- 
 
minimize distance: abs1 + abs2 + abs3 + 2*abs4 + 2*abs5 + 2*abs6 + abs7 + abs8 + abs9; 
 
# path choices 
path: A + B = 1; 
 
# x1 
  l1: 0 *A  + xo2*B <= x1;  # x1 greater than 
  h1: xo1*A + xm *B >= x1;  # x1 less than 
 
  l2: 0              <= y1;  
  h2: yo1*A + yo2*B  >= y1; 
 
  l3: 0 <= z1; h3: z1 <= zm; 
 
# x2 
  l4: 0  *A + xo3*B <= x2;  
  h4: xo4*A + xm *B >= x2; 
 
  l5: yo4*A + xo3*B <= y2;  
  h5: ym            >= y2; 
 
  l6: 0 <= z2; h6: z2 <= zm; 
 
# Distance 1 
  a1:  x1 - xi - abs1 <= 0; # | x1 - xi | 
  a2: -x1 + xi - abs1 <= 0; 
  a3:  y1 - yi - abs2 <= 0; # | y1 - yi | 
  a4: -y1 + yi - abs2 <= 0; 
  a5:  z1 - zi - abs3 <= 0; # | z1 - zi | 
  a6: -z1 + zi - abs3 <= 0; 
 
# Distance 2 
  a7:   x2 - x1 - abs4 <= 0; # | x2 - x1 | 
  a8:  -x2 + x1 - abs4 <= 0; 
  a9:   y2 - y1 - abs5 <= 0; # | y2 - y1 | 
  a10: -y2 + y1 - abs5 <= 0; 
  a11:  z2 - z1 - abs6 <= 0; # | z2 - z1 | 
  a12: -z2 + z1 - abs6 <= 0; 
 
# Distance 3 
  a13:  xf - x2 - abs7 <= 0; # | xf - x2 | 
  a14: -xf + x2 - abs7 <= 0; 
  a15:  yf - y2 - abs8 <= 0; # | yf - y2 | 
  a16: -yf + y2 - abs8 <= 0; 
  a17:  zf - z2 - abs9 <= 0; # | zf - z2 | 
  a18: -zf + z2 - abs9 <= 0; 
 
 
solve; # directive to solve 
display x1, y1, z1, x2, y2, z2, A, B;  # print result 
 
printf: "%.3f %.3f %.3f\n", x1, y1, z1 > "result.dat"; 
printf: "%.3f %.3f %.3f\n", x2, y2, z2 >> "result.dat"; 
printf: "%d %d\n", A, B >> "result.dat"; 
 
end; 



Appendix B: Polygon Obstacle Avoidance 

 
# Other Parameters ------------------------------------------------------------ 
 
param N default 4; # number of time steps / points 
param NN := N - 1; 
param M := 1000; # arbitrary large positive number 
param m := 0.001; # arbitrary small number to prevent division by zero 
param E default 4; # number of edges in polygon 
 
set T := 1..N;   # number of time steps / points 
set TT := 1..NN;  # one less than number of time steps 
set Dims := 1..2;    # 2 dimensions: x and y 
set C := 1..4;    # number of manually created abs constraints 
set Edges := 1..E; # number of total edges in polygons 
set ConstData :=1..3; # slope, constraint, direction 
 
# Input Parameters ---------------------------------------------------------------- 
 
# Initial Point: 
param xi; param yi; param zi; 
 
# Final Point: 
param xf; param yf; param zf; 
 
# Obstacle Description - edges x 3 data 
param obst{e in Edges, c in ConstData}; 
 
# Variables to Solve for ------------------------------------------------------- 
 
var points{t in T, d in Dims} >= 0;  # set of x,y points for problem solution 
var abs1{t in TT, d in Dims};        # middle steps 
var abs2{c in C};                 # initial and final steps 
var abs3{t in TT};                # optimize for hypotenues 
#var abs4{c in C};                 # limit distance in initial and final steps 
var orer{t in T, e in Edges}  binary; # vars used for doing ORs 
 
# Objective Function ----------------------------------------------------------- 
minimize distance: sum{t in TT, d in Dims} abs1[t,d] +      # all constraints between initial and final 
            sum{c in C} abs2[c] +                 # initial and final point constraints 
                   .5*sum{t in TT} abs3[t];                 # optimize hypotenus 
 
# Constraints ------------------------------------------------------------------ 
 
# ABS Distance between midpoints 
s.t. abs_min{t in TT, d in Dims}:  points[t+1,d] - points[t,d] - abs1[t,d] <= 0; 
s.t. abs_max{t in TT, d in Dims}: -points[t+1,d] + points[t,d] - abs1[t,d] <= 0; 
 
# Point to point distance limiter - more than .5 less than 2 
s.t. abs_diff1{t in TT}: abs1[t,1] + abs1[t,2] >= .5; 
s.t. abs_diff2{t in TT}: abs1[t,1] + abs1[t,2] <= 1; 
 
# Point to point distance limiter for init and end 
s.t. abs_diff3: abs2[1] + abs2[2] <= 8; 
s.t. abs_diff4: abs2[3] + abs2[4] <= 7; 
 
# ABS Distance Between change in x and y per point - optimize to hypotenus 
s.t. abs_diff5{t in TT}:  abs1[t,1] - abs1[t,2] - abs3[t] <= 0; 
s.t. abs_diff6{t in TT}: -abs1[t,1] + abs1[t,2] - abs3[t] <= 0; 
 
# Obstacle Constraints - Square 
#                                  direction* slope   * x         -direction* y          <= -direction*constraint+ OR 
s.t. obstAll{t in TT, e in Edges}: obst[e,3]*obst[e,1]*points[t,1]-obst[e,3]*points[t,2] <= -obst[e,3]*obst[e,2] + 
M*orer[t,e]; 
 
#.t. obst1{t in TT}:  -m4*points[t,1] + points[t,2] <=  (yo1-m4*xo1) + M*orer[t,3]; # x_min 
#s.t. obst3{t in TT}:  -m1*points[t,1] + points[t,2] <=  (yo1-m1*xo1) + M*orer[t,3]; # y_min 
#s.t. obst4{t in TT}:   m3*points[t,1] - points[t,2] <= -(yo3-m3*xo3) + M*orer[t,4]; # y_max 
 
#s.t. obst1{t in TT}:  points[t,1] <=  xo1 + M*orer[t,1]; # x_min 
#s.t. obst2{t in TT}: -points[t,1] <= -xo2 + M*orer[t,2]; # x_max 
#s.t. obst3{t in TT}:  points[t,2] <=  yo1 + M*orer[t,3]; # y_min 
#s.t. obst4{t in TT}: -points[t,2] <= -yo3 + M*orer[t,4]; # y_max 
s.t. obstOR{t in TT}: sum{e in Edges} orer[t,e] <= E-1; # at least one must be true 
 
# Initial X Axis 
s.t. a1:  points[1,1] - xi - abs2[1] <= 0;  
s.t. a2: -points[1,1] + xi - abs2[1] <= 0;  
 
# Initial Y Axis 
s.t. a3:  points[1,2] - yi - abs2[2] <= 0;  
s.t. a4: -points[1,2] + yi - abs2[2] <= 0;  
 
# Final X Axis 
s.t. a5:  points[N,1] - xf - abs2[3] <= 0;  



s.t. a6: -points[N,1] + xf - abs2[3] <= 0;  
 
# Final Y Axis 
s.t. a7:  points[N,2] - yf - abs2[4] <= 0;  
s.t. a8: -points[N,2] + yf - abs2[4] <= 0;  
 
# Solve ----------------------------------------------------------------------- 
 
solve; 
#display m1, m2, m3, m4; 
 
 
printf: "%d\n", 999 > "result.dat"; 
#printf{t in T, d in D} "%d,%d %.3f \n", t,d,points[t,d] >> "result.dat"; 
printf{t in T, d in Dims} "%.3f ", points[t,d] >> "result.dat"; 
 
 
#printf: "%.3f %.3f %.3f\n", x1, y1, z1 > "result.dat"; 
#printf: "%.3f %.3f %.3f\n", x2, y2, z2 >> "result.dat"; 
#printf: "%d %d\n", A, B >> "result.dat"; 
 
 
end; 
 


